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1. PIXEL-WISE LIFETIME DETERMINATION ALGORITHMS

A. Fitting methods
Fitting lifetime determination algorithms for the pixel-wise (PW) mode solve a minimization
problem for Histogram s,

[Â(s), q̂(s), τ̂(s)] = arg min ‖h(s) − ĥ
(s)‖2, (S1)

where ĥ
(s)

denotes the estimated histogram for h(s), ‖.‖ stands for the l2 vector norm. Â(s), q̂(s),
and τ̂(s) can be obtained by solving Problem (S1).

A.1. Laguerre expansion

The Laguerre expansion (LE) method estimates the underlying fluorescence decay f (s) with an
ordered set of discrete-time Laguerre basis functions (LBFs) [1],

f̂ (s)m =
L−1

∑
l=0

ĉ(s)l bl(m; α), (S2)

where L and α are the basis parameters and ĉ(s)l is the estimated lth expansion coefficient of
Histogram s. The lth discrete-time LBF is defined as

bl(m; α) = α(m−l)/2(1− α)1/2
l

∑
i=0

(−1)i

 m

i

 l

i

 αl−i(1− α)i, (S3)

where l = 0, . . . , L− 1, and 0 < α < 1. With Eq. (S2), the estimated signal becomes

ĥ(s)m =
m

∑
i=0

L−1

∑
l=0

ĉ(s)l · irfm−i · bl(i; α) + εm =
L−1

∑
l=0

ĉ(s)l · vl(m; α) + εm, (S4)

where vl(m; α) = ∑m
l=0 irfm−i · bl(i; α).

Then, Problem (S1) becomes,

ĉ(s) = arg min ‖h(s) − Vĉ(s)‖2, (S5)

where V = [v0, . . . , vL−1], vl = [vl(0; α), · · · , vk(M− 1; α)]T , and ĉ(s) =
[
ĉ(s)0 , . . . , ĉ(s)L−1

]T
. Eq.

(S5) can be addressed with the ordinary and constrained least-squared methods (LSM), as demon-
strated in [2]. Setting proper L and α depends on the lifetime dynamic range and the measurement
window T = M∆t. To guarantee that the estimated decay physically agrees with the real decay,
we adopted the constrained LSM with L = 16 and α = 0.912 in this work as suggested in [1] to
ensure robust analysis for 0.5 ns < τp < 3 ns, ∆t = 0.039 ns and T = 10 ns.

Once ĉ(s) is determined, f̂
(s)

can be recovered with Eq. (S2). Then decay parameters of

Histogram s can be extracted from f̂
(s)

using fitting methods, such as LSM and the maximum
likelihood method or non-fitting methods, to be discussed in the next section.



B. Non-fitting methods
Non-fitting methods, including the centre-of-mass method (CMM), the integral extraction method
(IEM), the phasor method (Phasor) and the rapid lifetime determination method (RLD), determine
average lifetimes for h(s). Two types of average lifetimes are generally useful for Förster resonance
energy transfer and dynamic quenching applications [3]. They are the intensity-weighted lifetime
τI and the amplitude-weighted lifetime τA [4, 5],

τI =
P

∑
p=1

qpτ2
p /

P

∑
p=1

qpτp, τA =
P

∑
p=1

qpτp. (S6)

The average lifetimes determined by CMM and IEM turn out to be τI and τA, respectively. The
outcomes are close to τI from Phasor and are neither τI nor τA from RLD [3]. Therefore, we only
focus on CMM and IEM in this work.

B.1. CMM

The average lifetime evaluated with CMM can be expressed as

τ
(s)
CMM =

∫ ∞
0 t · h(s)(t)dt∫ ∞

0 h(s)(t)dt
−
∫ ∞

0 t · irf (t)dt∫ ∞
0 irf (t)dt

=
∑P

p=1 q(s)p τ
(s)2
p

∑
p
p=1 q(s)p τ

(s)
p

≈∑M−1
m=0 tm · h(s)m

∑M−1
m=0 h(s)m

− ∑M−1
m=0 tm · irfm

∑M−1
m=0 irfm

, (S7)

which is equal to τ
(s)
I .

B.2. IEM

For IEM, deconvolution is required to obtain f̂
(s)

with which the average lifetime can be deter-
mined as

τ
(s)
IEM =−

∫ ∞
0 g(s)(t)dt∫ ∞
0 g(s)′ (t)dt

≈
P

∑
P=1

q(s)p τ
(s)
p

≈ − ∑M−1
m=0 Sm · f̂ (s)m

∑M−1
m=0

f̂ (s)m − f̂ (s)m−1
∆t

= −
∆t ∑M−1

m=0 Sm · f̂ (s)m

f̂ (s)M−1 − f̂ (s)0

, (S8)

where Sm = [1/3, 4/3, 2/3, . . . , 4/3, 1/3] are the coefficients for numerical integration based on
Simpson’s rule,

g(s)(t) = A(s)
P

∑
p=1

q(s)p τ
(s)
p e−

t
τp

[
1− e−

∆t
τp

]
. (S9)

τ
(s)
IEM is an estimator for τ

(s)
A . In this work, f̂

(s)
is extracted with LE; therefore, we denote the

whole process as LE-IEM.

2. GLOBAL-FITTING LIFETIME DETERMINATION ALGORITHMS

Algorithms for global-fitting (GF) construct a minimization problem for all histograms,

[Â(s), q̂(s), τ̂] = arg min ∑
s
‖h(s) − ĥ

(s)‖2, (S10)

Solving Problem (S10), Â(s) and q̂(s) for Histogram s and constant lifetimes τ̂ for all histograms
can be estimated. There are two strategies, the iterative convolution (IC) method and the variable
projection (VP) method, for implementing GF, i.e. addressing Eq. (S10). VP appears to be faster
than IC, as investigated in [6].

A. Iterative convolution
The decay is estimated with

f̂ (s)m = Â(s)
P

∑
p=1

q̂(s)p e−tm/τ̂p , (S11)
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where τ̂p are estimated constant lifetimes for all histograms with Â(s) and q̂(s)p being the parame-
ters for Histogram s.

Then the estimated signal can be expressed as

ĥ(s)m =
m

∑
k=0

irfk−m · f̂ (s)m , m = 0, 1, 2, . . . , M− 1. (S12)

With Eq. (S12), we can solve Eq. (S10) with constrained LSM. The analysis speed of IC
is significantly affected by the chosen initial conditions. S. Pelet et al. introduced different
approaches for initial conditions [7]. We adopted the lifetime segmentation approach as they
suggested. The implementation was performed with the MATLAB code developed in [7].

B. Variable projection
The idea of the global fitting with VP is to minimize a projection function that depends only on
nonlinear parameters τ, and obtain linear parameters A(s) and q(s). A matrix whose columns
only depend on τ is constructed,

Φ(τ̂) = [ϕ1 (τ̂1) , . . . ,ϕP (τ̂P)] , (S13)

where τ̂ = [τ̂1, . . . , τ̂P]
T , ϕp

(
τ̂p
)
=
[
ϕp
(
τ̂p; t0

)
, . . . , ϕp

(
τ̂p; tM−1

)]T , and ϕp
(
τ̂p; tm

)
= ∑m

k=0 irfk−m ·
exp

(
−tm/τ̂p

)
, p = 1, . . . , P.

Then the estimated signal can be written as

ĥ
(s)

= Φâ(s), (S14)

where â(s) =
[

â(s)1 , . . . , â(s)P

]T
, â(s)p = Â(s) q̂(s)p , and ĥ(s)m = ∑P

p=1 â(s)p ϕp
(
τ̂p; tm

)
.

With the given notation, we can rewrite Problem (S10) as

[â, τ̂] = arg min
Nvp

∑
s=1

∥∥∥h(s) −Φ(τ̂)â(s)
∥∥∥2

. (S15)

For a given set of τ̂, Eq. (S14)’s solution is â(s) = Φ−(τ̂)h(s), where Φ−(τ̂) is the symmetric
generalized inverse of Φ(τ̂). Then Problem (S15) can be expressed as

τ̂ = arg min
Nvp

∑
s=1

∥∥∥P⊥Φ(τ̂)h
(s)
∥∥∥2

, (S16)

where P⊥
Φ(τ̂) = I −Φ(τ̂)Φ−(τ̂) [6]. Once τ̂ is obtained from Eq. (S16), the linear parameter â

can be obtained as a solution of h(s) = Φâ(s). The implementation of VP is based on a modified
version of the VARP2 code [8].
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